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THEORY OF WING SECTIONS OF ARBITRARY SHAPE

By THEODORE TEBODORSDN

SUMMARY

!!’h% paper prtmn.ts a .sobutionof the problem of the
theoretical $ow of a frictionl+xs incomprewibb jluid
pad ai@ih of arbitraryforms. The velocily of the 2-
dimenshna.1$ow is explicitly Izcprw38edfor any poini
at th4 wmjiwe, and for any ori.eniaiion, by an &
expression containing a number of parameters which are
functiou of theform only and which maybe evaltied by
convenient graphical methods. 2%s method h particu-
larly simple and convenient for bodia of streamliw
fm. The results have been applied to typical airfoila
and compared&h experimenitddkta.

INTRODUCTION

The theory of airfoils is of vitaI importance in aero-
nautics. It is true that the limit of perfection as
regards efficiency has almost been reached. This
attainment is a result of persisbnt and extensive
testing by a kwge number of institutions rather than
of the fact that the important design factors are known.
Without the knovdedge of the theory of the air flow
around airfoils it is well-nigh impossible to judge or
interpret the results of experimental work intelligerkly
or to make other than random improvements at the
expense of much useless testing.

A science can develop on a purely experimental basis
only for a certain time. Theory is a process of sys-
tematic arrangement and simpliiioation of known facts.
As long as the facts are few and obvious no theory is
necessary, but when they become many and less simple
theory is needed. Although the experimenting itself
may require little effort, it is, howevar, often exceed-
ingly difticult to analyze the reauhs of even simple
experiments. . There exieta, therefore, always a ten-
dency to produce more teatresults than can be digested
by theory or applied by industry. A krge number of
investigations are carried on with little regard for the
theory and much testing of airfoils is done with insuffi-
cient lmowledge of the ultimate possibilities. This
stab of affairs is due largely to the very common belief
that the theory of the actual airfoil neoemruily would
be approximate, clumsy, and awkward, and therefore
useless for nearly all purposes.

The vaxious types of airfoils exhibit quite different
properties, and it is one of the objects of aerodynamieal
science to detect and deiine in precise manner the fac-

tors contributing to the perfection of the airfoil.
Above all, we must work toward the end of obtaining
a thorough underatandhg of the ideal ease, which is
the ultimate limit of performance. We may then
attempt to specify and defie the nature of the devia-
tions horn the ideal case.

No method has been available for the determination
of the potential floti around an arbitrary thick wing
section. The exclusive object of the following report
is to present a method by which the flow velocity at
any point along the surface of a thick airfoil may be
determined with any desired accuracy. The velocity
of the potential flow around the thick airfoil has been
expressed by an exact formtda, no approximation hav-
ing been made in the analysis. The evaluation for
speciiic cases, howevw, requires a graphical determi-
nation of some auxilimy parametem. Since the airfoil

is perfectly arbi&ry, it is, of course, obvious that
graphical methods are to some extent unavoidable.

Curiously enough, the theory of actual airfoils as
presented in this report has been brought into a much
simpler form than has hitherto been the case with the
theory of thin airfoils. In the theory of thin airfoils
certain approximations have restricted its application
to small cambera only. This undesirable feature has
been avoided, and the reaulta obtained in this report
have a complete applicability tc airfoils of any camber
and thickness.

The author has pointed out in an earlier report that
another difficulty exists in the theory of thin airfoils.
It consists in the fact that in potential flow the velocity
at the leading edge is infinite at all angles except one.
This particuhw angle at which the theor-j actually
applies has been deiined as the ideal angle of attack.
In the present work we shall not go any further into
this theory, since it is included in the following theory
as a special case of rather limited practical importance.

THEORY OF TEUCKAIRFOILS

In the theory of functions there is a theorem by
Riemann 1 which shows that it is always possible to
transform the potential field around apy closed con-
tour into the potential field around a chcle. The
direct transformation of an airfoil into a circle may,

1H8ndbu&da Ph@kj Band III, p. 24h Fmdmmntalsntx der kOllfOIYIl~
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for analytical purposes, conveniently be performed in
two steps. The fit step is to tiausform the airfoil into
a curve which ordinarily does not diner greatly horn i
circle by the transformation

m
where ~is a complex quanti~ defining the points in the
plane describing the flow around the airfoil and z‘
is another complex quantity deiining the points in the
plane deacribii the flow around the almost circular
curve. The constant a is of dimemion length and is
merely a geometrical scale factor. In the following
theory, attention is directed to the fact that the shape
of the curve resulting from transformation (I) is arbi-
trary, since the airfoil shape is arbitrary. At a later
point we shall transform this curve inta a circle.

The z’ and the t planes are shown superposed in
Figure 1. It will be noticed that at great distances

9

FIGURE L-Sho??fmT the hmfonnaUon lrcmanondrcdar cnrvo Btntoanahfoil

horn the origin z’a~; that is, both flows are similar
at infinity. In particular, the “angle of attack,”
defined as the direction of flow at Mnitity with
respect to some tied reference line in the body, is
identical in both flows. Near the origin the two flows
are entirely different; one value of z’ is, however,
uniquely associated with a given value of ~ by the
relation (I).

. We shall, at a later point, determine the flow in the
z’ plane. At present we shall determine the appear-
ance of the airfoil when the almost circular curve B
is given, or what amounts to the same thing, we shall
determine the curve B when the airfoil is given. In
Figure 1, cis a circle of unit radius. Since the matter
of dimensions is rather important, we shall avoid
confusion in the following by adhering to this length
ss unity. The curve B is uniquely given by the rela-
tion s’- se*@ where # is a known or unknown real
function of the angle 0 where 19varies from zero to 2r
and i is the imaginary unit. Since the airfoil surface
corresponds to the surface of the curve, the former is
given from relation (I) as

COMMTFI’EEFOR AERONAUTICS

This relation may further be conveniently expressed
in hyperbolic fUIICtiOIIS

~=2acosh*cos i3+2tieinh Vsin0

Since r=z+iy, the coordinates of the airfoil (z, y) are
given by

x=2acosh+cose
fl=2asinh*sin0 . m)

We obtain a relation between 0 and the coordinates
of the airfoil 8.9follows:

or developed

2ti2’”p+w
where

P“’-G)’-(H

(m)

Similarly we obtain a &lation between # and the
coordinate of the airfoil by using the equation

or developed

z~’$”-p+dpq ‘)

Since # is generally small for wing sections it may be
more conveniently expressed for purposes of calcu-

lation as a series in terms of 2*0, as follows:

We have
e#=&&#+co&#

=Sinh ++~~$

4+sinil#+&inh*t+ . . ● .

(#=log. l+sinh#t’@l’*+. . ●

)

=Sinh+ll.1-w+”. .

‘*6J-WJ+” “ “ ‘ma)
[for #< log, 2]

We are now in a position to reproduce the conformal
representation of an airfoil in the ~’, plane, since for
each point of the airfoil (z, y) both 6 and # have been
determined.
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The curves #= constant are ellipses in the ~ plane

&~sht)’+(2~~,)’”’

The fo,ciarelocated at (+ 2a, O).

ture at the end of the major

.(fi#)’=vor & cosh ~
—

The radiuz of curva-

. . (,asinh #)’
- E ‘= ,acosh*

This relation is useful for the determination of ~ near
the nose and the tail.

The leading edge, corresponding to 0= O,is located at

Thus we see that the length 4a corresponds to the
distance between ‘the point midway between the nose
and the center of curvature of the leading edge to the
point midway between the tail and the center of
curvature of the trailing edge.z

To establish the magnitude of the velocity at any
point (q y) on the airfo~ we start in customary mannei
with the velocity around a circle in %hmnzional
flow, Contrary to uzual practice we will, however,
make the radius of the cimle equal to a&o where *O
is a small constant quantity. This quantity is shown
later in this report (equation (e)), to represent the
average value of x taken around the circde0.

The potential function of the flow past this circle is

‘“-v (’+%)-%’of%%m
(reference 1, p. 83) and the velocity 8

where 1? is the circulation. This expression must
vanish at the rear stagnation point 4 (Kutta condition)
whose coordinate is z= —ado+*&’,), where a is the
angle of attack and & is shown to be &e angle of
zero lift,

~The OIIOICBof axes k ontfrdy orblhwy. It k a mattar of awmnkwe only to
obwsa the axc9w that the ofrfoll appare es nwrly ellfptfcdes msfbb thereby

a tbo IIOIXIIti ohdart; onrve B ae nearly ehudar os @lo by mmna of
tbo dngle tmneformation L It WI be awn that tbe evolmtfon of tbe bnportant
Integref app+arlng in the amwuifx ie then meat mrdly acmmplWmd. h ~ the
tramdonnetlonI ltr.df Ieonlya rnattorof convenienceto - the rmdy evaluation
of tbfs integml.

‘‘~ actually eqna19 n–b, tbo fmagoof the valc&Y * about the z-aria.

4It b wortbyof mentionfo notethat the tbeary ontlfnr=ifn tbfsreportmeYaotnaIIY
ho applkcf to snrwtb bodfcdof erblfmry ehope ff the dw.fatien fe spoMed. The
term%ingmotlons’’heebeenrwdfn thatftl etofmpf ybodkawfthelmrp(or
nearly eharp) tralllng odgesjwhm olrcnletfonfe or maY be cnnelderedW by the
Kntta cond!tfon or mme eqolvekmt essnmptlon.
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‘eobthr=-%”o-%)
(

#a-%p —e-i(u-q
“ 47rvfl.&

,i )

This flow around the circle may now be transformed
into the flow around any other body. In the particular
caae in which the flow at irdinity is not altered the
circulation will not be altered and the force experienced
by a body at the origin will remti at the tied value
L=P VI’.

We will now transform this circle, defied as
e= ae~~~ into our curve B defined by the relation
#= u&a. For this purpose we employ the general

transformation 2’= ~~ @*+@J * which leavw the flow
at infinity unaltared, the constants being determined
by the boundary conditions. By definition

Ho+i(e-q)=; (A8+iB=)$(cos nfo-i sinnp)

where z has.been expressed in polar form

z=r(cos p+i sin q)

and by De Moime’s theorem

11
~=~(oos rep-i sin nv)

Equating the real and imaginary parts we obtain the
two Fourier CXpMISiOM :

and

and .

(c)

(d)

(e)
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The quantity 8– p is necewmy in the following
An

amlysis. Let us eliminate the coe59ient ~ and >

in (b) by means of (c) and (d).
We obtain

J(8–p).-:cos w.; ~‘g sin ndp

The subscript c is added to indicate that the angles so
disthguished are kept constant while the integrations
are performed. The expression may be simpMied

Therefore,

The lattm iptegral is identically zero. (See W&on,
E. B. Advanced Calculus, p. 368. Follow method of
mercize 10.)
Then

For purposes of calculation this integral is expressed
in convenient form in the appendix.

We shall now resume the tszk of detaminin g the
velocity at any point of the surface of the airfoil.

The velocity at the surface of the circle is ‘~

(see equation (VI) and footnote). For corresponding
points on the curve B in the e’ plane and on the airfoil

in the ~ plane the velocities are respectively ~. $~

The quantities ~ and z’ are related by the expression

CO~ FOR AERONAUTICS

.
-$ [a(d –e+) cos e+~ (e++e+) s~ /j]

=;[2asinh #COS 13+2iizcosh +Sill 0]

Using the relations (II),

2a sinh #=~8 and 2a cosh #-&O

we obtain
d~ 1
d~=#cot d+i~t~ (?). G)

It now remains to find the ratio d%,. From the

relation
z/ - ~ ~~U.-W.)+

we obtain

%“2’ [ 1
;+d:; (An+i EJ+

or
dz’
z-z’ (;+:z[(+–*J+i (0–$41)

=2’ g (4+; (O–P)+ log z)

But
z= ae~o++

from which,

:-: (logZ)=goog fz+#o+iP)-&(@)

Therefore
dz’
~ =z’:z(#+i (e–P)+@)

=Z’:(++ti)

This expression may be written

:==z’$(#+ie) . g

But we have
1 .dq
--%zz

or

~=idp=id(p-o)+ide

and
dz

(
d(p–e)

~o=;z 1 +.7
)
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where

or

dz’ z’ d 1
m“; To (–i*+8)” —

1+$

dz’ Z’ 1–i+’—. ——
dz Z l+c’

m

d+
where e{ and ~~indicate ~~ and d~r respectively.

Equations (IX) and (X) give now <

‘t o ~=”=% (y cot O+ix tan 6) ~ ~.——
dz’ dz dz Z

(m

Because we are interested more in the magnitude than
in the direction of the velocity we will write for the
numerical value of thi9 expres-sion

d~I J@’ cot’ O+L?’tan’ e) (1 +W’)
al= a&O (1+ /)

(XIa)

The quantity
(0’ c0t20+(3Ytin’’kreamy se’n

to be equal to (by relation @))

or also

sinh’ #+ sin’ o

Hence

The numerical value of the velocity at the surface of
the circle is obtained by equations (VI) and (VII) as
follows :

Substituting the general point z= ae~i [A*J,where
a is the angle of attack as measured from the axis of
coordinates, in equation (W)

dw
~-– V(l – e-’i(a$’)) –2i Vain (a+ c~)e+w’).

~ –V[l–COS2(a+fo) +2 SiJl(a+e*) Sin (a+fo)

+i (sill 2 (a+cf)+2 sin (a+e=) cos (a+q))]

Replacing p by 0+ e (e=, the angle of zero lift, is the
value of q —8 at the tails), we have

dw
— ‘2 V[ti (a+~+~)+ti (a+~,)]dz

For a point on the airfoil we have, then,

dw ~z and horn @I), iimdly‘-~”d{

v_v[Sin(a+tl+c) +Sin(a+e~)] (l+e’)@ ~,
;(sinh~+sin’0) (1+ @“)

where the various symbols have the following signif-
icance:

o is the velocity at any point (z, ~) of the airfoil.
Vis the uniform velocity of flow at fit-y. “
y is the ordinate of the airfoil as measured from

the x-axis, where to fix the system of coordi-
nates (2a, O) is the point midway between
nose and center of curvature of the nose,
and (—2., O) is the point midway between
the tail and cen&r of curvature of the tail.

a is tie angle of attack as measured horn the
x-axiEas indicated in Figure 6.

y, 6, #, #’, e, and d are all functions of z.
Equation (XH), expressing the value of the velocity at
any point of an airfoil of any shape,issurprisinglyaitnple
when the complex nature of the problem is considered.
It hasthe distinct advantage of being exact; no approxi-
mations have been made in the preceding analysis.

We shall note some of the properties of this impor-
timt relation. Because y is generally small, the term

~ ~ ~is of influence chiefly near the leading edge,

where sin 0 is small. It is noticed, however, that if

*0= O for 0= O, equation @It) yields in all cases

U= OJ. This mew that the velocity at the nose be-
comes iniinite for sinh *= O (thin airfoils). This fact
has been pointed out in an earlier report. @eference

2.) The quantity *6 or sinh ~ is thus of con-

siderable significance in the theory of thick airfoils.
The velocity near the tail is obtained by putting

8= r+AO and c= e~+ dAO. Where AOis a small angle,
in equation @)

H

e~ (1+6’) [sin (O+cr+e)+sin (CC+E=)]
& ~(sinh’#+shl’e) (1+#’2)

-weget

H

e~ (l+c’) [— AO+a+eT+e’A6+a+eT]

;= ~(#+A@ (1 +~”)

e$a(1+ J)2 Ae

‘~(#+A@’) (1++”)

@ (l+e’)2

“@GTF= ‘f)

.Z%%%wi%%%x%%t%’siw%’%%$KiA%f%%t%%%%
cii-ddon isamornedtobo wnnidmd asamoflmnkdfro-on.
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* near the tail maybe expressed as

~=+#’ Ad+; ~“(A@’+

or

ADVISORY

.f=~r ,+1 If

AO Ag+~ ~~ A8+ . . .

The quantity ~ is idn.ite if YT is d.iflerentfrom zero

at A9= O. The velocity is in this case zero, indica~
ing the prcaence of the rear stagnation point. If, on
the other hand, #T is zero, that is, if the tail is per-
fectly sharp,

$.-$’ for AO=O

and the velocity at the tail is

eti(l+ </)2

‘“= v (1+*”)
or

~=*= V,@”(l+ 04
(1 +*”)’ (d

(Fot the Clark Y, oT2is about 0.88 V’ near the tail.)
We obtain the fiwnt stagnation point by letting

v= Oin equation m. Hence
a+e+%=-(a+c~)

In a previous report (reference 2)

has been defied as the ideal angle of attack. It is
seen that, for this angle of attack, 8 is zero or the stag-
nation point occurs directly at the nose.

Equation (XII) may also be applied to shut forms,
and for such symmetrical shapes takea even a simpler
form.

PRAC’lXCALAPPLICATIONOF RESULTS

We will now apply Formula ~) to the typical
case of the Clark Y airfoil and calculate the velocities
at points of the airfoil surface. The detailed method
of procedure is as follows.

1. The axis of coordinates is drawn through the
points (2a, O) and (–2a, O) located respectively at the
point midway between the nose and the. center of
curvature of the nose and the point midway between
the tail and the center of curvature of the tail. (See
fig. 6.) The radius of curvature at the leading edge is
1.75 per cent chord.

2. The points (z, ~) of the upper and lower surfaces
of the airfoil are determined with reapeot to this axis.

COMMTIYDE FOR AERONAUTICS

3. Sin %9,sin 0, and 0 are determined by the relation

2*2e=p+d@+(9’‘here’=w’-w
4. i is given by the relation

5. x is plotted as a function of 0

cotw dp by for-

Ec = –: [0.628#’c+ 1.065(#,– 4-.,) + 0.445(#~– h)

+ 0.231(#s– ~-,) + 0.104(~4–#-4)1

where #’. is the slope of the # curve at p= p, 41 the
27r

value of * at w=fpc+~, #2 at q=pd+~ ~etc.

$-1 the v~ue of @at v- PO–Z ~etc”

7. From the c versus 0 curve and from the Y versus
8 curves d and +’ axe determined.

8. Determine F by the relation

9. (8+ e) “k determined in radians and degrees.
10. Sin(O+ a+ ~)+ sin(a+ cT) is now calculated

where a is the angle of attack aa measured from the
axis of coordinates

11. +=~.[sh (8+~+~)+ ti (a+~.)]

12. :-l–
()

-f ‘ Qms9ure)

The entire calculation, properly arranged, can be quite
accurately obtained in a veqy short time.

COND?ARR30NWITH EXPERIMENTALRESULTS

In order to compare the theory with experhnentol
results, the geometic angle of attack a~ as measured in
the wind tunnel must be corrected for a number of
items, such as iinite span and effect of wall interference.
We may, however, obtain approximately the apparent
or effective angle of attack a~ (in radians as measured
horn the’ angle of zero lift) by taking the quotient
of the area of the prwaure-distribution curve and
5.5,since it is lmown that this value of the lift coeffi-
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cient is very nesdy realized in most cases. This has
been done in Table III, and the angle of attaok a, whioh
should be substituted in the Equation (XII), is
given in the last column. The pressure distribution
curves, Figures 2a, b, c, d, and 3a, b, c, d, were obtained
by application of Equation (XII) to the Clark Y airfoil.
Numerical results are shown in Tables I, II, and III.
The experimental values are from original data sheets
for N. A. C. A. Technical Report No. 363, and am
not entirely consistent due to Wliculties experienced
in these experiments. After the theoretical prsssure
distribution curves have been obtained, the moments
about any required sxis may be found. Table IV
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.ExperFmentol
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gives some of these results and Figure 4 shows the
comparison with experimental data taken from N. A.
C. A. Technical Report No. 312.

LmcmEY Mmomm AERONAUTICAL LABORATOIZY,

NATIONAL ADWSORY Co mmmm FOR AIJRONAUTIOS,

LANGLEY l?IELD, VA., October16, 19$1.



APPENDIX

EVALUATIONOF THE FORMULA

Although the above integrand becomes positively
and negatively infinite around q= PC, it is readily
verified that for X tits, throughout the range O—27,
the integral remains fits, the positive and negative
in.fb.itestrips exactly canceling each other.

The value of the integral for any point p. may be
accurately obtained by the following device. We
know that if Y is a continuous function and tile range
pl to * not too large

1
tin $%-PO

~Jp’$cotWd
2

q is very nearly *A log
s~ a—w

2

where VAis the average value of # in the range m to
~, Also near p= p, we may writs

, +“0+-*.+ (W–%)+’O+(P–%) ~+ “ “ “ “

Then fors a small quantity

=4 s+’=

(Site the even powers drop out and the~opcot q- 1).

Let us now divide the interval O– 23rinto 10 parts,
starting with p. as a reference point. (See @. 5.)

*

% 2X
&e P T:7 hbse

F1OUEE5.-The # ageh!stP enrw llhutretinem@4bedOf0Vd08t&n of Q

Then,

.
= –; [0.628 #’c+ 1.065 (#,–x_,) + 0.445 (#,–#_,)

+ 0.231 (~8–&) + 0.104 (#4–@_4)]

where #’Ois the slope of the # curve at q-PO

To evaluate the above integral it is, strictly speak-
ing, necesamy to know # as a function of P rather than

of &l We have P= 0+ e. For all flattened or stream-

line bodies, however, e is small; for ordinary airfoils

it is, in fact, so small that #(13) may unconditionally be

considered equal to #(@). For the sake of mathe-

matical accuracy we will, however, indicate how the

problem may be solved also for bodies of more irregular

contour by successive approximations. We have

#(P)=#(e)+6#’@)+ ● ● ●

& a fit approximation we neglect the second and all

following terms of this expression. The value of .S

thus obtained by graphical integration or otherwise

is then used in the expression for +(P) and a second

integration is performed, etc.

1 The qnetfon for ● b 8 mnllnear intqrel equetlen end to obtdn its axactmla-
tfon is a diftkdt mattcm fertnnataly kanm of tbe mnallmegnltude of c the mln-
tlon fnobtafnoble to anY dmlred occnnw by O- definfte Me@%

237
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APPLICATIONOF FLOW FOIZMULATO THE SPECIAL
CASE OF ~ ELLIPTICCYLINDER

& a matt8r of interest we will asmme the form of

and fid ~ for zero angle of attack, i. e., we have

#=#O=COllStMlt, #’=0, 6=0, e’=0, a=O.

Equation @II) becomes
y.e$

()
v ~o.e+ 2asinh$
T “@lh’*+sin2e-

~
and

0l!=~– ;’=l _ I@ (,ayy
fl (2a Sinh*)’+ (,ay)’

This result checks exactly with the form given by

Dr. A. F. Zahm in N. A. C. A. Technical Report No.
253, Flow and Drag Formulas for Simple Quadrics,
equation 14.
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EXPLANATION OF THE TABLES

The fit part of Table I refers to the upper surface
or to positive ordinatea of the Clark Y, the second
part to the lower surface or to negative ordinatea.
Column 1 gives the location in per cent of the chord; 2
give9 the ordinates with respect to the z-axis in this
same unit; 3 and 4 give z and y in the present system
of coordina~; 5, 6, and 7 give sin2 L9,sin 0, and 13,
respectively (Equation ~)); 8 gives * (by equation

as obtained horn # against e and ~ against e curves;

(See figs.7 and 8). Column 12 gives the quantity

CO~ FOR AERONAUTICS

Column 14 gives o+ e in degrees. The velocity at any
point z and angle of attack a is given by
o= V [sin (a+ O+ C)+ sin (a+ eT)].F and the pressure,

a

()
by:+ ;

It must be noted that a is measured from the line of

+7/7 -2a

i%=-+
r.

~J&7Z C 4

FIamm &-olark Y efrfofl+howfng S@3m of CMrdlnntes ‘

flow to the =axis as shown in Figure 6, and if otherwise
measured, must be reduced to this basis.

Fmwm 7.-Tha nnft ofde z-d, the olde z-d+’+, and the cmrespandlng
cnrve ti=efl~g
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TABLE I

CLARK Y
UPPER SUEFACIE

Kbm “eirle
— — –uradL+ #%0 In%el r $’

Rml
.a35
.075
.m
.fea
.OiQ

–: E–.cm
-. m
-. w
-. lW
-.104
–. 107
-.110
-. am
-. m

d

a 076
.fm
.m
.116
.116
.lm
.lm
.120
.105
.ml
.078
.070
.026

–: E
–. 076
–. m

9

l—
am alas
.220 .184
.331 .1s9
.469 .m

.213
:E .214
.7’W .21fJ

.214
i=
L 261 :%
L bn .176
L 761 . ma

.137
kE
24al XJ
2533
3.142 .m

~. gp
–. 055
-. m
~.

.m

.Om

.044

.IE3

.m

.Cw

.103

.110

.m

.W5

.m(m)

o

i%
L59
h 61
6.4b
7.70
&55
S.23
9,m
&74
7.n
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L25
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LW4
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L Kfl
L430
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.824
.421
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-. m
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-L m
-2 ml

am
.W
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.185
.m
.ml.811
.345
.372
.374
.3R
.313
.2M
.181
.W7
.m
.022

am am
.M74 .m
.Ww .315
. KM :g
.m
.W5 .665

. ne
%? . ml
.837 . W5

i% il%
.W3 .=
.847 .9XI
.649 .8M

.m
:% .443
.m .m

——

RI
3.’a
252
216
LS2
LM
L48
La
L21
L 17
L 18
LB
L 26
L78

%

–a079
.m
.!M
.4ZI
.533
.638
.Eol

i=
L424
L651

%
z 314
2tWl
2n8
3.!204

-432
8 47

lb 17
244
302s
36 16
45s3
5422
6845
8135

1} ~

132 34
148 43
lbs 10
IE333

LOWE SUIH OE

6.33
kn
3.64
X55
2a3
L81
L 4Q
LS3
L 16
L 076
L04
LM
L 13
L275
L6%5

%

o
L.53

R!
261
173
284
278
247
212
L78
L39
L~
.74
.40
.24
.03

2f05 am am
LS35 –.imJ7 .Cm7
L934 –.0787 f8#
LSS3 :.$ragl
L732 .269
L F31 –.no .342
L430 -.Ilb .4s2
Lza -. w .625
.=4 -. w% .831
.421 -. w
.0176 -. 07m i=

–. 3a6 –. O&M
–. m -.0416 :%

-L 183 -. O!&lb
-L b%3 –. 0161 :=
-L 7kS :.~
–2 WI .m

am
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-.m
-.414
-. m
-. 5s5
–. m
-. 7s1
–. 912
–. 978

-~. COJ

-.919
–. 8C0
-. w
–. 43s
–. m

a 1s3
.156
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.116
. lfo
.@J4
:%

.M5

:%
.Oia
.02a
.018
.013
.011
.W.o

-a07s am
–.103 .170
–.m .I@
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-.m .07b
-.081 .063
-.072 .043
-. O&s . MO
–. 046 .Osn
-.034
-.019 :E

.m .018

.023 -.017

.M2 -.053

: ~b

.a55

–:$%,
-.032
-.046
–. 048
–. m
-. o-w
–. Wo
-. w
–. Ow
~mJ

-. @o
-. m

–-7 :
-22 41
-30 43
-26 40
+lm
-m 40
-57 35
–n o
-S2 6
-98 21

+: :

-127 3s
–142 a
-IE3 43
-176 21

0

M
&o
7.b

10
16
m

%
m
m
m
80
‘w

1%!

TABLE II
CLARK Y

IJJwalamfaca

se I
Upp Sm’face

-
19+u+a -1-(6-E%)Fl

M
112
LS7
LE3
La
L 74
L6S
L67
L 49
L40
L %
L 2a
L 14
LU
.97

13
8.96
&u
4.49
387
3.65
am
%04
2ES
247
:g

L 76
L 51
L 31
L 13
.s5

P
z-

–2 Enl
-412
–a w
–267
–255
–230
–104
–L W
-L47
–L ‘2.2
-aB3
-0.76
–a m
-0.31
-a13

awl

-1-HFI’
0

i%
ho
7.6

10

X
30
40
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m
nl
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S6

lE

*I ‘ 0,

L09 3.m
.4m .m
.KO .m
.343 .117
.479 .229
.556 .m
.643 .414

:?% %J
.m
.m .640
.Sll .674
.F34 .003
.Ea6 .6W
.344 .7U
.857
.835 %%

ii
!24Ea
3337
406
4b 49
5326
6355
7618
91 8

104 8
llb 49
la 36
142 7
IE3 16
1e9 42

a 0376
.314b
.m
.6W
.6441
.nn
:=

.WQ2

.Ww

.W7

.WM

.781b

.6141

.37a3

.Ku7

a 3142
.5412
.6467
.7W
.87a3

i=
L1248.
L!W9
LZ&5
L 1934
LlM7
L~
.We
.5s70
.4224

–! d
-13 8
-21 10
-27 7
-32 17
47
-482
-61 n
-72 33
–s3 48
–04 7
-10s 41
-118 6
-133 ls
-143 10

0. C87b
-.1311
-.2272
-. 36U
-. 4b5s

-2 w

i%
.Es3
.m
.692
:%

.442

.m

.m

:%
.302
.m
.m
.125

-.4307
–.Slea
-.6517
-.m
-.7674
-.?io7
-.7%57
–.w
–.ml
–.m

Table II gives the numerical va

TABLE III

ms for Figure 2a in detail as an example. See lso Table I.

TABLE IV

Auf@
mEas&ed

abord llne
(: lps&d

“day
1-aA-3” w

Ma&&t
pint
Z-245

~~t
9’-0 ‘

Ckomatria

&%&l
dllle

mankdly
‘Q

Ammmat
-ailgh

F

Z8rolift
+ ad

radfam U* -a-t-,
d- I 1.

-a m
–.m
-.029
-.a91

m
.Zb
m
%3

-- pJ9

-. m
-. w

-_: ~
.am
.am;’6

852
2 17
0K4

0,

933
b 19

–1 16
–3 lb

0.22B
.155
.040
.0w3
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